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The effect of sample shape on the depinning of the domain-wall �DW� driven by an applied magnetic field
or a spin-polarized current is studied theoretically. The shape effect resulting from the modulation of the
sample width �geometric pinning� can essentially affect the DW depinning. We found a good agreement
between the ratios of the critical values of the magnetic field and the spin-polarized current predicted by the
theory and measured in the experiment.
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I. INTRODUCTION

During the last years an immense interest in current-
driven domain-wall �DW� motion in thin magnetic films,
nanotubes, and point contacts has been initialized by possible
applications in spintronic device technology �see, e.g., Refs.
1 and 2, and references therein�. These devices are expected
to be highly efficient, fast, and consuming less energy. They
possess such important features as nonvolatility, portability,
and capability of simultaneous data storage and processing.
A manipulation of magnetization by spin-polarized current
predicted by Berger for nonuniform ferromagnets3 and Slon-
czewski for multilayered ferromagnetic structures4 has at-
tracted the attention of physical community during last de-
cade and gained further development in Refs. 5–12.

The problem of DW motion under another driving force,
applied magnetic field, was addressed in late 1970s in con-
nection to possible application in memory storage devices
�see, e.g., Ref. 13�. In pioneering work of Schryer and
Walker14 it was shown the existence of an instability in the
laminar movement of the DW. These early results can actu-
ally serve as a reference for the studies of spin-polarized
current-driven DW motion. In particular, it is well estab-
lished now that for DW driven by magnetic field �or spin-
polarized current, or both� there exists a critical value of
driving parameter�s� which corresponds to maximum veloc-
ity of the DW �Walker velocity14�. Thus, the DW dynamics
includes two distinct regimes, so-called subcritical �below
the Walker breakdown� and supercritical �above the Walker
breakdown� ones.1,7 Below the Walker limit the overdamped
transient response of the system to applied magnetic field
follows by a steady state response while above the Walker
limit the DW dynamics is oscillatory with nonzero average
velocity.

In the case of field-driven DW motion the exact stationary
wave solution in subcritical regime was obtained more than
half-century ago by Walker.15 Analytical results of Bourne16

reproduced a velocity profile in full range of magnetic field
confirming numerical simulations of Slonczewski in super-
critical regime.17

Modern fabricated logic elements based on manipulation
of the DWs are represented by a complex networks of nano-
wires, which can form three-dimensional memory storage
structure, e.g., a racetrack device that comprises an array of

magnetic nanowires arranged horizontally or vertically on a
silicon chip.18 The spacing between consecutive DWs is con-
trolled by pinning sites fabricated by patterning notches
along the edges of the track or modulating the track’s size
and material properties. Being a necessary component of the
logic elements, the pinning sites define the bit length and
provide the DWs stability against external perturbations,
such as thermal fluctuations or stray magnetic fields from
nearby racetracks. The variation in the nanowire geometry
creates the pinning potential for the DW and may essentially
affect the properties of the wall. According to Bruno,19 at a
very small characteristic length of a constriction separating
two wider regions the width of the DW is given by this
characteristic length and does not depend on the magnetic
anisotropy and stray field so that such a wall constitutes a
new kind of the DW, besides the well-known Bloch and Néel
walls. Geometrically induced pinning can be stronger than
the pinning due to natural imperfections.20 Therefore, the
depinning field in nanostructures with constrictions can be
adjusted over a wide range of values by changing the notch
geometry.

The strength and width of pinning potential are crucial
parameters in designing of memory devices with the low
current consumption. The underlying origin of the depinning
magnetic field, Hc, and threshold current, Jc, is extremely
important. The case of imperfections of the material �exis-
tence of pinning centers or edge roughness� was considered
in details by Tatara and Kohno6 who showed that in a limit of
weak pinning a threshold current is proportional to the hard-
axis anisotropy while in opposite limit of strong pinning it is
entirely determined by the strength and width of the pinning
potential. Due to complexity of the problem, the theoretical
studies of the influence of the geometry of the sample �exis-
tence of the constrictions or notches� on the DW depinning
by a spin-polarized current are restricted by the micromag-
netic simulations �see, e.g., recent publications20,21�.

The knowledge of the behavior of the DW in artificially
created structural defects and constrictions is extremely im-
portant for producing reliable memory devices. In spite of a
growing number of experimental studies which gain insight
into the properties of the DWs pinned by artificial defects
�see, e.g., Refs. 11 and 22–25�, a detailed understanding of
the role of the shape effects on the dynamics of the DW
driven by magnetic field and �or� spin-polarized current is
still lacking.
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In this paper we study shape-dependent effects on the
properties of DW confined in potential wells created by the
defects in the bulk and by the variation in the sample shape
�geometrical pinning�. We analyze the difference in the de-
pinning of the DW driven by applied magnetic field, from
one side, and spin-polarized current, from another. The re-
sults of our studies are in accordance with the recent data and
micromagnetic simulations of Refs. 20 and 21. We provide a
plausible explanation of recent experimental data on manipu-
lation of DW in constricted stripes of SrRuO3.11

II. GEOMETRY AND BASIC EQUATIONS

The DW displacement under driving magnetic field and
spin-polarized current can be adequately described by
Landau-Lifschitz-Gilbert equations complemented by a spin-
transfer torque, �J

�tm = − ��m � He� + ��m � �tm� + �J, �1�

where � is the gyromagnetic ratio ���0�, � is the dissipa-
tion parameter, He=−�F /�M is effective magnetic field, F is
free energy density of the ferromagnet, and m=M /Ms is a
unit vector in the direction of the magnetization M �Ms is the
saturation magnetization�.

Despite different approaches in calculation of the spin-
transfer torque �J, there is a consensus about the existence of
adiabatic and nonadiabatic terms �or 	 term6� that contribute
to the spin-transfer torque

�J = − �U · ��m + 	m � �U · ��m , �2�

where U=Un, U=
BJP /eMs �
B is Bohr magneton, e is the
elementary charge, J=I /A is the current density, I is a value
of the current, A is a cross-section area of the sample, and P
is the spin polarization�, n is unit vector in the direction of
the current. Parameter 	 is a ratio between the values of
nonadiabatic and adiabatic torques.

Let us consider the 180° DW of Bloch type in a con-
stricted platelike sample with variable size Lx=Lx�y��L0�1
+G�y�� along x direction and constant dimensions Ly and Lz
along y and z axis as shown in Fig. 1. The function G
=G�y� describes the change in the sample shape. In the ab-

sence of the constriction G=0 and Lx=L0. The DW width, �,
is much less than the width of the plate, Lz, i.e., ��Lz. The
surface of the sample is parallel to the xy plane, and the
domain wall, being parallel to the xz plane, separates two
domains with magnetization M�y� along the +z or −z direc-
tion and is located initially in the constriction at y=0.

The free energy functional of the ferromagnet is F
=�VdrF where the free energy density F
=F�m�r� ,�m�r� /�xi� is defined by

F = K�− mz
2 + qmy

2 + �0
2��imj���imj�� − HMsmz. �3�

Here the first and second terms in square brackets describe
the magnetic crystallographic anisotropy, the third term is the
exchange energy, and the last term is the Zeeman energy in
an external magnetic field H �z. In Eq. �3� K�0 is the pa-
rameter of the easy-axis crystallographic anisotropy, the ratio
q=K� /2K�0 determines a joint effect of orthorhombic an-
isotropy and the magnetostatic energy, and �0 is a half-width
of the DW at rest, which characterizes the stiffness of the
spin system. The choice of the sign q�0 implies alignment
of the magnetization M in the xz plane. Thus, in the absence
of the driving force the formation of DW of Bloch type with
the rotation of the magnetization in xz plane is energetically
more favorable.

The magnetization m can be expressed in polar coordi-
nates, m= �sin 
 cos � , sin 
 sin � , cos 
�. In the absence of
driving forces �H ,U=0� the ground state of the system is
defined by minimization of the free energy with respect to
azimuthal, �, and polar, 
, angles, i.e., �F /��=0 and
�F /�
=0. This yields the well-known structure of Bloch
DW located at the center of the sample constriction
�y=0� :
0=2 tan−1 exp�y /�0� and �0=0.

The standard approach in statics and dynamics of the DW
is to use the Slonczewski equations for two canonically con-
jugated variables, the coordinate of the center of the DW �,
and azimuthal angle � �see, e.g., Ref. 13�, which are inde-
pendent of the coordinate y. For a sample with variable
cross-section area A�y�=A0�1+G�y�� �A0=LzL0 is the area
of the cross section at y=0, and G��� is a shape function
dependent on the geometry of the sample� these equations
are

�d�

dt
+

�

�

d�

dt
	�1 + G���� = −

�

2Ms

��

��
+ 	

U0

�
,

�d�

dt
− ��

d�

dt
	�1 + G���� =

�

2Ms

��

��
+ U0, �4�

where U0= �1+G�y��U�y�, �=�0�1+q sin2 ��−1/2 is the ef-
fective DW width, and ��� ,�� is the surface energy of the
DW determined by the integral across the whole DW width

� = A0
 dy�1 + G�y��F�
0�y − ��,�� . �5�

The goal of the present work is not investigation of the DW
motion but determination of the depinning threshold, when
such motion becomes possible. Therefore, one may ignore
the time dependence of the variables. The second term �	 in
the spin torque �nonadiabatic torque�, Eq. �2�, is most rel-

FIG. 1. �Color online� 180° Bloch domain wall. The magnetiza-
tion in the domains are parallel and antiparallel along the z axis �the
easy axis�. Inside the domain wall the magnetization rotates in the
xz plane. The low panel shows an example of constricted sample
with the DW located in the constriction.
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evant for depinning. This term is related to the momentum
transfer between the polarized current and the DW. The adia-
batic torque �the first term in Eq. �2�� causes the rotation of
the DW plane around z axis relative to it equilibrium position
�xz plane� but does not affect the DW depinning directly.

III. DEPINNING OF DOMAIN WALLS

Usually, the pinning �coercivity� force on a DW originates
from randomly located defects, which create potential wells
for the DW in the sample bulk. However, key features of the
bulk pinning phenomenon can be investigated using a sim-
pler model of a DW in a periodic potential. The latter enters
the DW surface energy, i.e., �→�+�p with �p=2HpMs
�1+G�����f���, where f��+2��= f��� is a periodic function
with a period 2�. Within the period �−������ this function
can be approximated by a parabolic function f���
= �1 /2��� /��2. In addition to the pinning on the defects, there
is another type of pinning �geometrical pinning� related to
the change in the sample shape. Eventually neglecting the
structure of the DW, i.e., assuming that sin2 
�y�=2���y�,
from Eq. �4� with use of Eq. �5� we obtain

	
U0

1 + G���
+ �H� = �Ha�0

2 ��G���
1 + G���

+ �Hp���f���� ,

U0

1 + G���
= −

q

2
�Ha� sin 2� , �6�

where Ha=2K /Ms is a magnetic field corresponding to the
easy-axis magnetic crystallographic anisotropy of a sample.
According to Eq. �6�, the modulation of the sample width
gives rise to an effective geometrical pinning of the DW. It
follows from Eqs. �6� that DW can be depinned by action of
magnetic field, H, or the nonadiabatic contribution of the
spin-polarized current, 	�0. In the following, we consider
two particular cases, H�0, U=0 and U�0, H=0.

A. Depinning by applied magnetic field: HÅ0, U=0

In case of H�0 and U=0, it follows from Eq. �6�, that
�=0, �=�0, and the depinning of the DW by magnetic field
is not affected by the presence of the orthorhombic aniso-
tropy. Thus, instead of the first equation in Eq. �6� we have

�H − Hp���f�����1 + G���� − Ha�0��G��� = 0. �7�

Equation �7� manifests the absence of a total force experi-
enced by DW. The driving force from the magnetic field �the
term �H� and the bulk pinning force confining the DW in a
potential well �the term �Hp� are proportional to the total
DW area, ��1+G���� while the force experienced by the
DW in a shape-dependent pinning potential is determined by
the derivative of the shape function ��G��� �the last term in
Eq. �7��.

For simple shape potential, which can be expanded in
series on DW displacement �, the function ��G��� /
�1+G���� reaches a maximum at some value of the param-
eter �=�. Thus, it is insightful to characterize the geometric
pinning potential, which is responsible for the shape effect,

by the strength of the potential H� and the characteristic dis-
tance �, which are analogous to the parameters Hp and � of
the pinning potential due to the defects. The value of the
critical magnetic field H� is defined by

H� = max�Ha�0

��G���
1 + G���
 = Ha�0

��G���
1 + G���

�8�

while � is obtained from the condition of a potential extre-
mum �1+G����

2 G− ���G�2=0.
Thus, the presence of a constriction results in the change

of the DW area and appearance of the geometrical pinning,
which is independent of the distribution of defects. In ab-
sence of pinning on defects �Hp=0�, the increase in the ap-
plied magnetic field below the critical field �H�H�� causes
the DW displacement ��H� �which is not a linear function of
a magnetic field, in general� until its depinning at H=H�.

With use of H� and � both terms that contribute to the DW
pinning �see Eq. �7�� can be rewritten in a similar way

H − Hp
�

�
��� − ���� − H�������� − ���� = 0, �9�

where ���� is a step function and the function ���� is de-
fined according to

���� =
��G����1 + G����
��G����1 + G����

. �10�

Equation �9� defines a function �=��H� and can be solved
for given geometry of the constriction. The results of numeri-
cal calculation of the function �=��H� in the particular case
of a parabolic potential created by the constriction when G
= �� /��2 are shown in Fig. 2 and reveal the general features
of the DW depinning by the applied magnetic field H. Figure
2 illustrates the possibility of four different scenarios of DW
depinning dependent on the relation between � and �, from
one side, and Hp and H�, from another. The analysis shows
that these scenarios can be classified according to the values
of two critical parameters, namely, the depinning magnetic
field Hc and critical value of the DW displacement �c. The
value of Hc and �c are defined according to

Hc = �max�Hp;H� + ��/��Hp� if � � �

max�H�;Hp + Ha�0��G���/�1 + G����� if � � �


�11�

and

�c = �� if Hc = Hp,Hp + Ha�0��G���/�1 + G����

� if Hc = H�,H� + ��/��Hp,



�12�

where we assume that the maximum width of the constric-
tion along y axis exceeds the critical distance �c. For H
�Hc ����c� the pinning potential cannot stop motion of the
DW.

In Ref. 20 geometrically confined DWs are imaged di-
rectly with sub-10 nm resolution using off-axis electron ho-
lography and the magnetic fields needed to depin DWs from
the constriction are measured as a function of the constric-
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tion width w �see, Fig. 3�a��. The value of magnetic field that
is governed by the material imperfections and edge rough-
ness �in a sample without constriction� is 60 Oe while the
depinning field of the narrowest constriction is 335 Oe.

Therefore, the geometrically induced pinning is stronger than
the pinning due to the sample defects. This enables the mea-
suring of the dependence of the depinning field on the notch
geometry. In the interval ����a, the shape function of the
notch can be modeled by the linear function G���
= ���� /w�tan �, where � is a notch angle �see, Fig. 3�c��. At
the conditions of the experiments,20 it follows from Eqs. �11�
and �12� that a critical value of magnetic field is Hc
= ��0 /w�Ha tan � and a critical value of the displacement of
a DW is �c

�H�=�=0, where the upper subscript shows that the
critical displacement of a DW corresponds to the depinning
in applied magnetic field. The critical magnetic field is scaled
as inverse width of the notch, i.e., Hc�w−1. This result has a
simple physical meaning, i.e., the narrower the notch width
is, the deeper is the potential to be overcome by a DW lo-
cated at the notch. It is in accord with the data and numerical
simulations of Ref. 20 which demonstrates the increase in
depinning field, Hc with decrease in constriction width, w.

B. Depinning by a spin-polarized current: UÅ0, H=0

In the case of U�0, H=0, instead of Eq. �6� we have
another pair of equations

	U0 − �Ha�0
2��G��� − �1 + G�����Hp����f��� = 0,

�13�

U0

1 + G���
= −

q

2
�Ha� sin 2� . �14�

Equation �13� manifests the balance of forces on the DW: the
forces from the spin-polarized current ��	� and the geo-
metrical pinning ��Ha�, and the bulk pinning force ��Hp�.
Equation �14� defines the function �=��� ,U0�

sin � = − U�1

2
�1 − qU2� + �1

4
�1 − qU2�2 − U2�1/2
−1/2

,

�15�

where U=U0 /2q�Ha�0�1+G����. Substituting Eq. �15� into
Eq. �13� one can calculate the function �=��U0�. For the
sake of simplicity we neglect the change in the DW width
assuming that ���0, which is true if ��1 �U�1�. In this
case Eq. �13� can be rewritten in a following way:

	U0

��0
− Ha�0��G��� − �1 + G����Hp���f��� = 0. �16�

It follows from Eq. �16�, that in case of unconstricted sample
�G=0� a DW can be depinned and participate in a steady-
state motion when the current exceeds the critical value de-
fined by the equation 	U0

c /��0=max Hp���f���.
The condition for DW geometric depinning by the current

is more severe than by the magnetic field. This because the
pressure on the DW from the constant magnetic field �the
force per unit area of the DW� does not depend on the DW
area growing with the DW displacement, whereas the pres-
sure from the constant current is determined by the current
density, which is inversely proportional to the DW area. Ac-
cording to Eq. �16� at Hp=0, the critical value of a current is

FIG. 2. �Color online� The plots �=��H�, which illustrate four
different scenarios for the depinning of the DW subjected to an
applied magnetic field H, for ��a� and �b�� ��� and ��c� and �d��
���, as described in the text. The solid curves 1 show the DW
displacement � for the joint effect of bulk pinning and geometrical
pinning potentials. The DW displacement in the presence only of
bulk pinning or geometric pinning is shown by dashed curves 2 and
3 respectively. The open circle corresponds to critical point
A��c ,Hc�, where eventually depinning takes place. The critical
magnetic field Hc and the critical displacement of the DW �c are
defined by Eqs. �11� and �12�.

FIG. 3. �Color online� �a� Scanning electron microscope image
�SEM� of a part of wide wavy line structure with a small notch �140
nm constriction� fabricated on permalloy �Ni80Fe20� structures �re-
ferred from Ref. 20�, �b� SEM image of notch structure fabricated
on Si /SiO2 substrates using e-beam lithography and sputtering of
Ni80Fe20�20 nm� /Au�1 nm� �referred from Ref. 21�, and �c� the
simulated shape of the constricted sample.
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determined by the threshold 	U0
�g�=�Ha�0

2 max���G����
above which the DW can overcome the geometrical pinning.
For a parabolic shape function G= �� /��2, the function
��G��� is unbound, and DW depinning from the geometric
pinning potential is impossible. Let us consider the DW be-
havior in this case.

We assume that a single DW is initially located in the
constricted area ��=0�. The increase of the current density
above its critical value at a given position of the DW results
in the drift of the DW from the constriction into expansion
part of the sample. Such a drift is accompanied by the in-
crease in the DW area followed by the decrease of the cur-
rent density �the current does not depend on the location of
the DW� below its critical value. As a result, the DW will be
eventually pinned in a new position by an array of the near-
est defects. The further increase in the current results in in-
crease in a driving force and a displacement of the DW into
a new position where the driving force is balanced by the
increase in the pinning force. At this new position the DW is
stuck again till the next increase of the current. Actually, in
the presence of bulk pinning centers the displacement of the
DW under spin-polarized current is characterized by a step-
by-step drift over an array of bulk defects.

Equation �16� can be solved numerically for given func-
tions G��� and f���. The results of numerical calculation of
the function �=��	U0� for a parabolic shape function G
= �� /��2 are present in Fig. 4 which illustrates the absence of
the critical point on the curve �=��	U0� ��→� when
	U0→��, contrary to the case of depinning of a DW driven
by a magnetic field H �see Fig. 2�.

Recently, the threshold current density required for de-
pininnig a DW from a constriction with variable profile in
nanowires was investigated in Ref. 21. A set of notched
structures has been fabricated on Si /SiO2 substrates using
e-beam lithography technique and sputtering of
Ni80Fe20�20 nm� /Au�1 nm� �see, Fig. 3�b��. The variation

in the threshold current on the notch angle, �, was measured,
while the wire width, l, and constriction width, w, were kept
fixed at l=1.4 
m and w=500 nm �Fig. 3�c��. Using the
same shape function, as in Sec. III A, i.e., G���
= ���� /w�tan �, and f���= �1 /2��� /��2, instead of Eq. �16�
we have

	U0

��0
− Ha

�0

w
tan � − �1 +

�

w
tan �	Hp

�

�
= 0. �17�

For correct determination of a critical value of current den-
sity �current per cross-sectional area of nanowire�, i.e., Jc
�	U0w /��0l, the relation between a geometrical pinning
potential and a pinning potential governed by the imperfec-
tions of the sample is needed. Assuming for simplicity that
the main contribution to the DW pinning is due to geometri-
cal pinning and neglecting the contribution from the pinning
on the defects which can be made due to location of a notch
at a small part of the wire and is the case of the experiment
in Ref. 21, one can obtain Jc� tan � and �c

�J�=0 �see, Ref.
26�. The increase in critical current density, Jc, with increase
of the notch angle, �, has a simple explanation, the larger is
the notch angle, the deeper is the pinning potential to over-
come by the DW located at the center of the constriction.
Therefore, the developed theory is consistent with the
results21 where the depinning threshold current was observed
to vary almost linearly at the values of �=21°, 33°, 43°, and
53°.

C. Domain wall in a constricted sample of SrRuO3 and
comparison with experiment

The developed theory can be exploited to understand the
data on depinning of the DW from double V-shape constric-
tion in submicroscopic patterns of SrRuO3.11 SrRuO3 is a
metallic perovskite with orthorhombic structure �a
=5.53, b=5.57, c=7.82 Å� and an itinerant ferromagnet
with Curie temperature of �150 K and a saturated magne-
tization of �1.4
B per ruthenium. It shows so-called bad
metal behavior at high temperatures but is a Fermi liquid at
low temperatures. SrRuO3 exhibits a positive Seebeck coef-
ficient in the wide range of the temperature from �0 K till
�1000 K,27,28 manifesting the holelike character of the
charge carriers. The samples are high-quality epitaxial thin
films of SrRuO3 grown by reactive electron beam coevapo-
ration on slightly miscut ��0.2°� SrTiO3 substrates with the

�001� and �1̄10� axes in the film plane. These films exhibit a
large uniaxial magnetocrystalline anisotropy �anisotropy
field Ha�10 T at T→0 K� with the easy axis tilted out of

the film ��45°� and with an in-plane projection along �1̄10�.
Consequently, the domain magnetization is out of film plane,

the Bloch DWs are parallel to �1̄10� axis and the orthorhom-
bic anisotropy �including the magnetostatic energy related to
the shape anisotropy of the sample� contributes to the struc-
ture of the DW. Due to the large uniaxial magnetic aniso-
tropy the DWs are relatively narrow with temperature inde-
pendent width of �3 nm.

The experimental setup is shown in Fig. 5�a�. The mea-
surements on the displacement of the DW driven by mag-

FIG. 4. �Color online� The plots �=��	U0� of the DW confined
in potential wells created by artificially fabricated constriction and
bulk pinning centers. The jumps of the function �=��	U0� are the
result of the DW depinning from local volume defects within peri-
ods of the potential landscape. The values of the current-dependent
parameter 	U0 required to depin the wall from the local potential
are shown by the vertical dashed lines. The increase in the driving
force results in a step-by-step drift of the DW. In calculations we
use a parabolic shape function G= �� /��2. Open circle corresponds
to the critical parameters for a sample without constriction. Note the
absence of the depinning critical point for the constricted sample.
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netic field and spin-polarized current were performed on a
high-quality 375-Å-thick film of SrRuO3 with the resistivity
ratio of 20 ��10 
� cm at 4 K�. The DW initially located at
the constriction �see, Fig. 5�a�� was unpinned under the ac-
tion of a magnetic field or a spin-polarized current and
moved in the positive direction of y axis �parallel to �001��
toward the pair of leads EF. The magnetic state of the sample
in the region of contacts EF was monitored by measuring of
extraordinary Hall effect �EHE� proportional to the average
component of magnetization Mz perpendicular to the film
plane �xy plane�. The final location of the DW at the leads
EF was deduced by the change of the sign of EHE followed
by the change of the magnetic state at EF. The experiment
shows that the DW displacement into a final position at the
leads EF is achieved only with a value of the magnetic field
�current density� above a certain threshold for the magnetic
field or the current.

The shape of the sample �see Fig. 5�b�� can be approxi-
mated by a function

G��� =
��/�1�2

1 + �/�2
+

��/�3�2

1 + �/�4
, �18�

where �1=1.138 
m, �2=2.6 
m, �3=0.561 
m, and �4
=0.52 
m. The results of numerical calculation show that a
function G���=��G��� / �1+G���� has a maximum at �=�
=0.44 
m with G���=1.1675 
m−1. The assumption ���,
which is true assuming that ����1.5 nm, leaves two pos-
sibilities for the critical value of magnetic field Hc �see Eq.
�11��

Hc = max�H�;Hp +
1

2
Ha��� 1

�1
2 +

1

�3
2	
 , �19�

where we use G�����2��1�−2+��1�−2 for ���. The choice of
Hc in Eq. �19� depends on the critical value of magnetic field
corresponding to the geometrical pinning H� given by Eq.
�8�. Using the values of Ha�10 T and �0�1.5 nm,11 we
obtain H��160 Oe, which is less than the highest value of
the depinning field Hc=500 Oe measured at the temperature
T=40 K.11 Therefore, we conclude that the critical magnetic

field measured in Ref. 11 is dominated by the contribution of
bulk pinning on defects, i.e., Hc�Hp, in accordance with the
conclusions of Ref. 11. Evaluating the critical field Hc in Eq.
�19�, we have neglected the small contribution of
��� /2�2�H�, which is on the order of several oersteds. It
follows from Eq. �12� that the critical value of the DW dis-
placement � is ���0=1.5 nm��=0.44 
m, therefore the
scenario illustrated in Fig. 2�b� is realized. After depinning
when H�H� and �����0=1.5 nm the DW moves freely
�see Ref. 6� till it reaches the leads EF �Fig. 5�a��.

In case of current driven DW motion the measured value
of a spin-polarized current corresponds to the arriving of the
DW at the leads EF �see Fig. 5�a��. Both contributions to the
DW pinning resulting from the distribution of the defects and
the change of the sample shape can be evaluated from the
data11 by use of Eq. �16�. To calculate the value of the cur-
rent predicted by the theory we replace ���f��� in Eq. �16�
by its maximum value: max����f����=1

	U0

��0
− Ha�0��G��� − �1 + G����Hp = 0. �20�

Furthermore, we assume that the DW moves at the distance
��1.5 
m till it is registered by observation of the change
of the sign of extraordinary Hall effect at the leads EF �see,
Fig. 5�a��. With use of Ha�10 T, �0=1.5 nm and the mea-
sured value of the depinning field Hp=571 Oe at T=40 K
�Ref. 11� one can show that Ha�0��G����411 Oe and
�1+G����Hp�2250 Oe which gives a relative contribution
of the geometrical pinning �20%. The measurement of the
corresponding current density allows to evaluate the param-
eter of the nonadiabaticity 	. For SrRuO3, the current density
J translates into the velocity U0 according to U0�m /s�
=3.64�10−10 PJ�A /m�. Substituting the measured value of
the current density J=5.8�1010 A /m2 into Eq. �20� �Ref.
11� and using the value of spin polarization P�0.5 �see Ref.
29� we obtain 	�6. Being in accord with the conclusions of
the high efficiency of monitoring of the DW by spin-
polarized current in SrRuO3,11 such large value of 	 cannot
be explained by the contribution of the spin-relaxation pro-
cess, which gives the value of 	���1 �see Refs. 7 and 8�,
but can be understood due to the dominant role of the reflec-
tion of the charge carriers from thin DWs in the framework
of the theory developed in Ref. 6.

Since bulk pinning on defects varies from a sample to
sample, it is unpractical to look for quantitative comparison
of the theory and the experiment in the case of predomi-
nantly bulk pinning. However, if there are data for the criti-
cal magnetic field and the critical current for the same
sample, one may easily find from the theory their ratio and
compare it with the experimental values. As it was shown by
Tatara and Kohno6 the dynamics of the abrupt DW in ideal
plate-parallel sample is dominated by the momentum transfer
from the charge current to the DW via reflection of charge
carriers from the DW. Since this momentum transfer deter-
mines also the DW contribution to the resistance, in accor-
dance with Ref. 6 the parameter 	 can be found from the
relation

FIG. 5. �a� Scanning electron microscope image of the patterned
sample Ref. 12� and �b� the shape function of the constricted
sample. Current pulses are injected between A and B. The average
magnetization is determined by measurement of extraordinary Hall
effect between C and D and between A and B. The rectangle
bounded by the dashed line shows the region of the sample where
the DW experiences a geometric pinning.
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	U0

��0
=

enRwA
2Ms

J , �21�

where n is a total charge carrier density and Rw is the DW
contribution to the resistance. Substituting Eq. �21� into Eq.
�16�, we arrive at the equation that defines the value of the
current density J as a function of the displacement of the DW
in the presence of bulk and geometric pinning. As was
pointed out in Sec. III B, complete depinning of the DW
from the potential produced by growing cross section of the
sample is impossible. However, one may introduce the criti-
cal current density Jc �determined at the constriction�, at
which the DW reaches the position where the DW is detected
�the leads EF in Fig. 5�a��. Then

Jc = Jc0�1 + G�����1 +
Ha

Hc

�0��G���
1 + G��� � , �22�

where � is the distance between the sample constriction and
the place of DW detection, and

Jc0 =
2MsHc

enA0Rw
�23�

is the critical current density of depinning for the DW in an
unconstricted sample.

The temperature dependent saturation magnetization Ms
=Ms�T� and the DW resistance Rw were measured in Refs.
30 and 11, respectively. According to Ref. 11 the carrier den-
sity n is about 1.6�1028 �1 /m3�. This offers an opportunity
to compare the developed theory with the data.11 Calculating
the critical current density Jc with help of Eq. �22�, we as-
sume that the relative contribution of the geometric pinning
�the term �Ha in Eq. �22�� is temperature independent and
equals to the value of �20% calculated at T=40 K. Then
Eq. �22� yields Jc�5Jc0. Figure 6 shows the experimentally
determined critical current density �circles� together with the
prediction of the theory using the experimentally found criti-
cal magnetic fields and taking into account the shape-
dependent effect �geometric pinning�. The figure illustrates a
satisfactory agreement between the experiment and the
theory.

It is important to note that the sign of the ratio between
the current and the DW displacement depends on the sign of
charge carriers. The relative sign of the current and the dis-

placement in the experiment gives evidence that charge car-
riers are holes. This agrees with the experiment on the See-
beck effect.27

IV. CONCLUSIONS

We investigated pinning of a domain wall by potentials
produced by bulk defects and the sample shape. The process
of depinning by an external magnetic field and by a spin-
polarized current was analyzed. The shape-dependent pin-
ning potential �geometric pinning� can essentially affect the
process of depinning and may even make complete depin-
ning by the spin-polarized current impossible. Though the
absolute values of the critical magnetic fields and the critical
currents, at which depinning occurs, are sample dependent
and difficult for theoretical prediction, their ratio must be
sample independent6 and allows reliable comparison of the
theory and the experiment. We performed this comparison
and found a satisfactory agreement.
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